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Abstract

A distributed parameter mode! for a class of
search and capture problems In the plane Is dorived.
The output Is a time-varying simple loop In R? and the
Input a moving line segment. The applications dis-
cussed include destroyer search, oil spill clearance,
forest fire control and fishing. Circular motion Is
shown to produce a non-trivial steady-state region
whenever the velocity ratio between searcher and
evader attains a computed critical value.

Introductlion

Suppose that we wish to carry out a search in the
plane, R?, with the visible points at time t being a
line segment of fixed length d attached to a moveable
origin 0. (See Figure I-a.) The search might begin
with a rotation of "the line of sight" as Indicated In

Figure I-b.
/\\
/ ;
A Fig. 2 The searched-and-clear region
d assuming no detection has occured
straight line segment extracted from the |ine of sight
0 by Intersection with the loop. This segment will
- #] hereafter be called the control or input segment.
(a) (b)

Derivation of the m.del

Fig. | Starting the search
To each simple loop of the type eiuded to we

The objective is to search for evasive objects in the attach coordinates in the manner indicated in Flgure 3.

vicinity ot 0 which have speed known to be bounded by
a given number 8 > 0. |f after a steady rotation of
the |Iine ot sight by 360° no evaders have been
detected then we can be assured there are no evaders
present in the clear region indicated in Figure 2.
Notice that the clear region is a proper subset of the
searched region since the objects sought can move
about.

A W A i

If the search were now terminated the clear region
would tend to contract. To counter thls tendency with
the hope of eventually expanding the clear region the
searcher might proceed with some combined motion of 0
and the line of sight. The partial differential equa-
tion derived in this paper provides a mathematical
foundation for studying the relative merits of such
search procedures.

£t

Other game-theoretic problems to which the model
also applies are discussed in the later sections. A
problem in which the searcher moves along a clrcular
path is studied In some detall.

Fig. 3 Assignment of system coordinates

Some refiection upon the nature of the search

situation presenting itself In Figure 2 suggests that
the appropriate cholce for the state of the system Looking at the loop at time t first locate the control
segment which, when extended, penetrates the Interior.

might be a time-varying loop bounding the searched-and-
clear region. The control Input will be the moving Along this extended line select an origin 0. The 1
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state of the system, i.e. the loop, can then be
described by a function p(t,4) where ¢ is the indi-
cated angular coordinate. To describe the motion of
the control segment a control point such as the center

g Is selected along It. The radia! distance to the end
of the loop nearest 0 is denoted by r(t) and 8(t) is
the segment's angular velocity. The respective speeds
of the control point along the segment and orthogonal
to it are indicated as x and y. At any time that a
point on the loop is not being driven by the control
segment i+ will be assumed to be moving inward along a
normal to the loop at speed 8.

Looking ahead, it turns out to be convenlent to
describe the system In terms of the following canon-
lcal control variables.

u =6 ()
up =y - o(+,000 - ro (2)
ug = X - F = 0, (1,0) (3)
uy = ; (4)
ug = x - r (5)
and to position the control point at the outer end as

indlicated in Figure 4. There u, and u, are identified
as the respective speeds of 0 ogfhogongl to and

parallel to the moving segment. The variables u, and

u. glve the speeds of the ends of the control seémenf
a?ong the line of sight.

,u.ﬁ"'
0 Gyt
Fig. 4 The canonical control variables

Observe that the change of control variables (1)-(5)
can be inverted by Integrating that system of {lInear
ordinary differential equations. Upon assigning
rectangular coordinates (z|,z2) to the orligin of the
loop It is clear that

Z = uscoso - uzslno

(6)

;2 = usslne + uzooso (7)

which points out that the motion of 0 Is strictly
governed by Ups Uy and uge

In Figure 5 we study the change in the geometry

e

or the system during a small t+ime displacement At. To
each point on the loop at time t with coordinates
! ¢, o(t,4) there is a corresponding polnt with coordi-
- rates ¢, p(t+at,¢) on the displaced loop. This
3 correspondence produces the Induced angles A¢, vy and

n Indicated Iin the diagram along with the magnitude
of the loop displacement paralled to 1tsel¢, BAt,

Ay b stk i IR T AP IO
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Fig. 5 The change in geometry during At

First we compute &, the Induced change In p
indlcated i Figure 5. Consider the infinitesimal
right triange generated by the displacements §, gat
and replacement of the loop at the point ¢, p(++at,d)
by its tangent line. (See Figure 6.)

BAt

Fig. 6 The Infinitesimal triangle
for computing &

Recal! that In the elementary differential geometry of
a curve with polar coordinates 6, r(6) (not to be
confused with the control varlables) the standard angle
v between the radial and tangent line Is given by

tany = :—. Thus we compute
(-]

8= fegat)? o LB8TL_ BAT 20 4y 4 pf(f,o). ()
tan“y p(t,¢)

Next we apply the law of sines In Figure 5 to get

g(fﬂf‘!) +8 sln(n-sM)
plt, sinly *

By adding and subtracting the appropriate terms this
{ast equation can be written as

(9)

b o i i
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1

8 sin(n-¢-8¢) Ap [n(f,f“/‘.'la) - n(fﬂ)] (a0
A Sin(y+$) t A

sinln= -Ap) N
_F[Jn(yfoi J (A

from figure 5 it is clnar that

sin(n-¢-4¢)
mﬁr—"lasl\f*o. on

Notice that y - A8 + n =1, Hencey + n-+n as At + 0
and by the employment of standard trigonometric

pltEAT, 8)-n(t,8)]
53 ]

identities
| sin(n-¢-4¢) _ =) |sin{n-¢4-4 ) _
_f[ Tn(y+¢) I] Y [sin(n-o-Aei l]
. Ao+AB
= 2 sin[2854e [COS(" E T)] (12)
At 2 sin(n-¢=-48)
fim (Ae- A, I+tan(lim n)tan ¢
LU Himigz - 2.
Tan (1Tm n-¢7 Fan{TTm ni-fan ¢ —‘F

2
But tan(lim n) = — and
u
3
u,cos¢ - u,5ing
Ay _ 2 4
lim A—f- UI + —-_DTF,TT_—' (13)
hoth direct conclusions drawn from Figure 5. Substi-
tution into (12) then shows
[uzsln¢ + u3c050]

e (14)

! [sintn-¢-a¢) _ ,] ..
At Lsin(y+é

as At » 0,

By substituting (8) into (10) and then using (11), (13}
and (14) to take limits as At » 0 the partial
difterential equation in the following model is
derived.

The distributed model

uzcoso S u35lno
oy = ul+——°-— o (15)
- u,Sing - ugcosy - -J 2 4 oz
0(0,4) = o (9) (16)
t
(1,00 =p (0) + [Luglo) - uy(0)}do (17
o]
t
o(t,2n) = p_(21) + [[u,(0) - u(0)Jdo (18)
o

The initial function p°(°) in (16) Is prescribed.

The last two boundary conditions arise from the cholce
of positioning the control point (x,y) at the end of
the control segment; i.e. requiring that

r(t) = p(t,2n) - o(+,0) In the iIntegrated form of
r=u,-ug and p*(f,O) = Ug = Uy which follow from

(3), (4) and (5).

Remarks about the model

The partlal difterential equation (15) contalns a
nonlinear term which reflects the evasion being taken

into account. For zoro evader speed (8 = 0) that term
drops out toaving a quasi-linear equation. Its roie
in tho damplng of the solution will becom: apparent.

In the modol up, Uy are distributed controls with
Ugs Ug strictly boundary controls and ug mixed, The u;

varlables might well be called input-output varlables
(distinguished from the state~the loop) since from the
geometric nature of the mode! It Is clear they can not
be chosen arbltrarlly. The Input-output nature of

Uygr Ug depends upon whether U, Uy, ugare in the mode

tending to stretch or compress the ends of the loop.

The model will exhibit memory-loss if the control
segment is "backed-up" over the Interior of the loop.
This is a sacrifice made to maintain the relative
simplicity of the model. It is also capabie of
exhibiting shock and bifurcation phenomena.

Game-theoretic applications

The originally stated goal underlying the deri-
vation of (15)-(18) was a model for generating the
boundary loop of the searched-and-clear set for
search in which the field of visibilivy at any given
time Is a line segment and the objects being sought
have evasive speed bounded by a parameter 8. We shail
point out some other conflict situations to which the
model applies as well. The control theory of this
dlsfrlbufed system will be presented in another
article.!

Destroyer search

Suppuse that an alrplane flying about an alrcraft
carrier has two observers on board each watching out
one of the side windows for the purpose of detecting
any enemy destroyers before the destroyers can bring
the carrier within range of their missiles. |f we
wish we can assume that the dostroyers have superior
radar or perhaps satellite Information so they would
maneuver in an attempt to approach within range of
the carrier while remaining outside the detection
range of the radar on the carrier and sight of the
airplane. Using the search path selected by the air-
plane as input (15)-(18) would generate the time-
varying region which the carrier could be assured
contains no destroyers as long as the airplane reports
no sightings. Clearly the airplane would want to choose
a path which would expand this region Into a comfortable
area about the carrier (say larger than the destroyer
missiie range if possibie),

Here we will consider only circular search and
look for the path with the largest steady state disk.
That is we select u'(f) = c', constant, and ul(f)

(i = 2,3) identically zero in (15), This gives rise to
the ordinary differentlal equation for the steady state

c|°. . g ,pz + p-%- =0 (19)

which can be integrated to give

LT o

Equation (20) determines a one-parameter family of
monotone loops p = p(¢) with paramter p(0) = Be 12 5

_om

(See Figure 7.) Define & = p(2vw) ~ Pyr the length
of the control segment, and let the airplane move

5
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along at the center of the control segment with |inear
speed v.

Flg. 7 The steady state disk

In view ot the airplane's circutar path

21

which can be substituted into (20) along with ¢ = 2n
nd p-c-bi-d.'h:gaf

¥ ncﬂ.
:(3)

. Vi - (12 du. (22)

b >0,
o

Tha following theorem states that (22) implicitly
detines Qg ® po(A,%) as a function of the parameters

v
{ and g
Theorem 1. |If % Is sufficiently large so that
E? -1 v sin” o) 2 3 (23)
thens

(a) for each A > 0 (22) has a unique solution
Moreover (23) Is necessary for such a

olution to exist.

) po(A,%) +mas b e,
(c) DO(A,*) +0as A~+0.

Proof. One can easily verify that (23) implies

that <> |, Hence the Integral in (22) converges to
zero gs Po > ™ On the other hand If we set

[
p =
° 2g- 1)
we see the Integral takes on a value at least as great
as 2n, The existence of the required solution Po

to (22) then follows from the intermediate value
theorem.2 The uniqueness follows from the fact that
the Integral Is monotone decreasing In Py The

In the Integral and apply (23) then

necessity of (23) is clear from the monotonicity and
the observation that If p were chosen any smaller
than the above choice thef the integral would not be
deflned since the lower |imit of Integration would be
less than one.

To prove (b) note that If for some sequence
A~ = the corresponding values of p_ remained boundeu
then (22) would be violated since th lower limlt of
Integration would again become less than one. Part
(c) follows from the observation that if for some
sequence A, converging to zero the correspnnding
values of 5 remained bounded away from zero then the
limits of IRtegration in (22) would both converge to
-;-and that equation would be violated.

Remark, In the destroyer search problem %

Is the observers' range of visibility. Theorem |
implies that If the search plane can attain or exceed
the critical speed ratio (aboui 3.9) then once the
disk of radius p_ computed from (22) has been cleared
about the carrief the carrier can rest assured that
there are no destroyers within distance P, from It as

long as the search plane reports ro sightings. More-
over this is the largest such disk for the given
search path,

01l splll clearance

Many seemingly different conflict situations have
essentially the same underlying mathematics. For
example the model (15)=(18) would apply as well to the
problem of cleaning up an oil splll on the surface of
the ocean as it tends to dissipate in all directions
at a speed 8 or less due to wave action, wind, etc.
Here we are thinking of a clean-up device which absorts
a swath of the oll as it Is steered around the peri-
meter of the spill. In this problem 8 would be a
negative parameter. The results given for the circular
search problem would apply directly to give the radiu:
of the largest circular spill that could be contalned
and eventually cleaned up by a plece of equipment of
speed v and swath width A,

Forest fire control

The distributed model is well suited for analy:zing
a varlety of forest fire problems. For example con-
sider the situation whereln en airplane is dropping
fire fighting chemicals about a town to protect it
from a surrounding fire. |If the fire had not yet
contacted the treated region we would set g = 0 in
(15)-(18) to predict the extent of the protection
which could be developed by any avallable equipment.
The control segment in this problem would be the cross
sectional line of the chemical trail as it struck the
surface. Once the fire reached the treated region a

¢
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positive value of B would be used to activate the non-
|inear term accounting for the spread of fire across
the treated area. The spread of an inltially localized
flre would be modeled using 8 negative.

Netting fish

Suppose that a fishing vessel towing a net sights
a large school of fish swimming near the surface but
the schoo! quickly submerges from sight upon being
pursued. If a bound upon the swimming speed of a fish
Is known can the fishing boat catch all the fist In
its net? This is another interesting question which
can be asked of our model. Of course we are making
the assumption that the fish remain at a sufficiently
shallow depth so that we can keep the problem two
dimensional. The answer will depend upon the speed of
the vessel, the size of Its net and the Initial’
distribution of fish,

Example
Consider the model with 8 = |, u'(f) = uz(f) =

(t) 20, u4(f) = us(f) z =| and initial function
i y 0o
00(0)- (24)

cos ¢ +v4 - sin2¢ , TS0 <20

Yy

shown in Figure 8.

Flg. 8 The initial ltoop and the
state at switching

The partiz| differential equation then is
o= VGT o7 | (25)

fts solution could be obtained using the method of
characteristics although it is much easier to obtain
the following solution directly from the initlal loop
and the geometric nature of the problem.

I -t »0 <o <

plt,9) = (26)
cos¢ + V(2-1)¢ - sin‘y

» WS <20,

The solution exists for 0 <t <1, 0<¢ < 2n, At

time t = | the Initial loop has been steered down to
the semi-circular loop indicated in Figure 8, That
loop can be further shrunk down to a point according
to the solution

0 0<o <3

p(t,s) = 2mn

2(2 = t) cos¢ ,5110121'

during | <t < 2 by switching the controls to us(f) =

us(f) =, ut) = -l onl <t < 2. Hence the model
continues to'hold in spite of the fact that the origin
of the loop strikes the loop itself and then sticks
there.
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